ساختار هسته

بسم الله الرحمن الرحیم

 

ساختار هسته

در داخل هر اتم سه ذره وجود دارد:الکترون با بار منفی , پروتون با بار مثبت و نوترون خنثی. بارهای همنام یکدیگر را دفع و بارهای غیر همنام یکدیگر را جذب میکنند بجز نوترون که هیچ عکس العملی ندارد.

هسته اتم هر عنصر از پروتون و نوترون تشکیل شده است که مجموع تعداد آنها را عدد اتمی آن عنصر ,وبه آنها نوکلئون میگویند. لازم به ذکر است جرم نوترون 675/1ضربدر 10 به توان منفی 27 کیلوگرم ,وجرم پروتون 673/1ضربدر 10 به توان منفی 27 میباشد.

پروتون های تشکیل دهنده هسته اتم چون دارای بار مثبت هستند پس طبیعی است که یکدیگر را دفع کنند برای جلوگیری از این اتفاق نوترون ها مانند چسبی از متلاشی شدن هسته جلوگیری میکنند.الکترون ها نیز در مدارات بیضی شکل و نامنظم در اطراف هسته با سرعت بسیار زیاد در حال گردشند وهر چه این الکترون ها به لایه والانس نزدیکتر میشوند تعلق آنها به هسته کاهش میابد(بر اساس مدل اتمی بور).

اما اگر بخواهیم علمی تر بحث کنیم باید بگوئیم تقریبا سه نیرو در هسته هر اتم وجود داردکه یکی از آنها سعی در انهدام هسته و دو تای دیگر سعی در پایداری هسته دارند. اولی نیروی کولنی یا همان دافعه پروتونی میباشد , دومی نیروی گرانش ناشی از جاذبه بین ذرات جرم دار است وسومی که مهمترین دلیل جلوگیری از متلاشی شدن هسته میباشد همان نیروی هسته ای است. دقت کنید نیروی کولنی بسیار ناچیز است و نمیتواند به تنهایی هسته را متلاشی کند و نیروی گرانش ذرات نیز بسیار کم میباشد و توانایی در تعادل نگه داشتن هسته را ندارد,در واقع این نیروی هسته ای است که اتم را در تعادل نگه داشته و از واپاشیده شدن نوکلئون ها

جلوگیری میکند. برای توضیح این نیرو باید گفت اگر فاصله بین پروتون و نوترون از 5 ضربدر 10 به توان منفی 15 متر(5فمتو متر) بیشتر شود نیروی هسته ای وجود ندارد , بر عکس اگر این فاصله از مقدار یاد شده کمتر شود نیروی هسته ای بیشترمیشود بدین طریق هسته از متلاشی شدن نجات میابد.

سال 1905 در یک آپارتمان کوچک در شماره 49 خیابان کرامر گاسه در برلین (منزل مسکونی اینشتین)اتفاق بزرگی افتاد ; کسی چه میدانست با کشف فرمول معروف نسبیت خاص E=mc2 میتوان جان هزاران نفر را در هیروشیما و ناکازاکی گرفت و یا اینکه برای میلیون ها نفر در سرار جهان برق و انرژی تولید کرد ؟!

فرمول E=mc2 به ما میگوید که اندازه انرژی آزاد شده برابر است با تغییرات جرم جسم تبدیل شده در مجذور سرعت نور. به این معنی که اگر ما جسمی به جرم مثلا یک کیلوگرم را با سرعتی نزدیک به سرعت نور به حرکت درآوریم انرژی معادل 9ضربدر10به توان 16 ژول خواهیم داشت که رقم بسیار وحشتناکی است ولی واقعیت این است که چنین چیزی غیر ممکن است !!! چرا ؟

چون بر اساس همان فرمول نسبیت حرکت با سرعت نور برای اجسام غیر ممکن است. برای درک بهتر موضوع فرمول را به شکل دیگری مینویسیم : m=E/C2 اگر C2 ثابت فرض شود به روشنی پیداست که انرژی و جرم نسبت مستقیم با یکدیگر دارند ,حال اگر ما بخواهیم جسمی به جرم m را با سرعت نور © به حرکت درآوریم طبیعتا باید به آن انرژی بدهیم و از آنجا که m و E با یکدیگر نسبت مستقیم دارند پس هر چه انرژی بیشتر شود m نیز بزرگتر میشود ودر واقع قسمت اعظم انرژی صرف ازدیاد جرم میشود تا سرعت دادن به جسم . پس تقریبا به بی نهایت انرژی نیاز داریم واین همان چیزی است که حرکت با سرعت نور را برای اجسام غیر ممکن میکند.

قبل از اینکه توضیحات بیشتری داده شود لازم است کمی هم در مورد راههای آزاد کردن انرژی هسته ای بگوئیم.

به طور کلی انرژی موجود در هسته به دو روش آزاد میشود :

1 - روش شکافت هسته ای که در آن یک اتم سنگین مانند اورانیوم تبدیل به دو اتم سبکتر میشود . ویا به عبارتی دیگر وقتی که هسته ای سنگین به دو یا چند هسته با جرم متوسط تجزیه میشود میگویند شکافت هسته ای رخ داده است و وقتی هسته ای با عدد اتمی زیاد شکافته شود , مقداری از جرم آن ناپدید وبه انرژی تبدیل میشود(طبق قانون نسبیت).

2 - روش همجوشی (گداخت هسته ای) ; که در آن دو اتم سبک مانند هید روژن تبدیل به یک اتم سنگین مانند هلیم میشود. درست همانند اتفاقی که در حال حاضر در خورشید می افتد, که در هر دو حالت انرژی قابل توجهی آزاد می شود.

در حال حاضر اکثر بمب های هسته ای ونیروگاههای هسته ای بروش شکافت هسته عمل میکنند .

حال دوباره به توضیحات مربوط اتم بر میگردیم . در اینجا لازم است نکاتی را در مورد پایداری و ناپایداری توضیخ دهیم...

اگرما 13 پروتون را با 14 نوترون ترکیب کنیم هسته ای خواهیم داشت که اگر 13 الکترون در اطراف آن گردش کنند یک اتم آلومینیوم را میسازند .حال اگر میلیاردها عدد از این اتم ها را در کنار هم قرار دهیم آلومینیوم را می سازیم(AL27) که با آن انواع وسایل نظیر قوطی ها و درب وپنجره ها و غیره... را میتوان ساخت.

حال اگر همین آلومینیوم را در شیشه ای قرار دهیم ! وچند میلیون سال به عقب برگردیم این آلومینیوم هیچ تغییری نخواهد کرد ,پس آلومینیوم عنصری پایدار است . تا حدود یک قرن پیش تصور بر این بودکه تمام عناصر پایدار هستند. مساله مهم دیگر اینکه بسیاری از اتم ها در اشکال متفاوتی دیده می شوند . برای مثال : مس دو شکل پایدار دارد , مس 63 ومس 65 که به این دو نوع ایزوتوپ گفته می شود .هر دوی آنها 29 پروتون دارند اما چون در عدد اتمی 2 واحد فرق دارند به سادگی می توان فهمید که تعداد نوترون های اولی 34 ودیگری 36 است وهر دوی آنها پایدار هستند.در حدود یک قرن پیش دانشمندان متوجه شدند گه همه عناصر ایزوتوپ هایی دارند که رادیواکتیو هستند.مثلا : هیدروژن را در نظر بگیرید , در مورد این عنصر سه ایزوتوپ شناخته شده است.

1 - هیدروژن معمولی یا نرمال (H1) در هسته اتم حود یک پروتون دارد وبدون هیچ نوترونی. البته واضح است چون نیازی نیست تا خاصیت چسبانندگی خود را نشان دهد چرا که پروتون دیگری وجود ندارد.

2 - هیدروژن دوتریم که یک پروتون ویک نوترون دارد و در طبیعت بسیار نادر است. اگرچه عمل آن بسیار شبیه هیدروژن نوع اول است برای مثال میتوان از آن آب ساخت اما میزان بالای آن سمی است.

هر دو ایزوتوپ یاد شده پایدار هستند اما ایزوتوپ دیگری از هیدروژن وجود دارد که ناپایدار است !

3 - ایزوتوپ سوم هیدروژن (تریتیوم) که شامل دو نوترون و یک پروتون است. همان طور که قبلا گفته شد این نوع هیدروژن ناپایدار است . یعنی اگر مجددا ظرفی برداریم واین بار درون آن را با این نوع از هیدروژن پر کنیم و یک میلیون سال به عقب برگردیم متوجه میشویم که دیگر هیدروژنی نداریم و همه آن به هلیم 3 تبدیل شده است (2 پروتون و یک نوترون) واین ها همه توضیحاتی ساده در مورد پایداری و ناپایداری بود.

در یک پاراگراف ساده میتوان گفت که هر چه هسته اتم سنگین تر شود تعداد ایزوتوپ ها بیشتر میشود و هر چه تعداد ایزوتوپ ها بیشتر شود امکان بوجود آمدن هسته های ناپایدار نیز بیشتر خواهد شد و در نتیجه احتمال وجود نوع رادیواکتیو نیز بیشتر میشود.

در طبیعت عناصر خاصی را میتوان یافت که همه ایزوتوپ هایشان رادیو اکتیو باشند.برای مثال دو عنصر سنگین طبیعت که در بمب ها ونیروگاههای هسته ای از آنها استفاده می شود را نام میبریم : اورانیوم و پلوتونیوم.

اورانیوم به طور طبیعی فلزی است سخت,سنگین,نقره ای و رادیواکتیو,با عدد اتمی 92.سالهای زیادی از آن به عنوان رنگ دهنده لعاب سفال یا تهیه رنگهای اولیه در عکاسی استفاده میشد و خاصیت رادیواکتیو آن تا سال 1866 ناشناخته ماند و قابلیت آن برای استفاده به عنوان منبع انرژی تا اواسط قرن بیستم مخفی بود.

خصوصیات فیزیکی اورانیوم

اورانیوم طبیعی (که بشکل اکسید اورانیوم است) شامل3/99% از ایزوتوپ اورانیوم 238 و7/0% اورانیوم 235است. که نوع 235 آن قابل شکافت است و مناسب برای بمب ها ونیروگاههای هسته ای است. این عنصر از نظر فراوانی در میان عناصر طبیعی پوسته در رده 48 قراردارد. از نظر تراکم و چگالی باید گفت 6/1 مرتبه متراکم تر از سرب است.وهمین تراکم باعث سنگین تر شدن آن می شود.برای مثال اگر یک گالن شیر وزنی حدود 4 کیلوگرم داشته باشد ,یک گالن اورانیوم 75 کیلوگرم وزن دارد!!!

انواع اورانیوم

اورانیوم با غنای پایین که میزان اورانیوم 235 آن کمتر از 25% ولی بیشتر از7/0% است که سوخت بیشتر راکتورهای تجاری بین 3 تا 5 درصد اورانیوم 235 است.

اورانیوم با غنای بالا که در اینجا بیشتر از 25% وحتی در مواردی آن را تا98% نیز غنی میکنند و مناسب برای کاربردهای نظامی وساخت بمب های هسته ای است.

و اما منظور از غنی سازی اورانیوم چیست؟

بطوربسیار خلاصه غنی سازی عبارت است از انجام عملی که بواسطه آن مقدار اورانیوم 235 بیشتر شود و مقدار اورانیوم 238 کمتر. که پس از جمع آوری اورانیوم 238 ,آن را زباله اتمی می نامند.

غنی سازی اورانیوم به روشهای مختلفی انجام می شود که چند مورد از آن را خدمت شما یادآور می شویم: 1-استفاده از اصل انتشار گازها 2-استفاده از روش فیلترینگ 3-استفاده از میدانهای مغناطیسی 4- استفاده از دستگاه سانتریفوژ که در حال حاضر روش چهارم متداولترین,باصرفه ترین و مطمئن ترین روش به شمار میآید.

در اواخر سال 1938 هان,مایتنر و اشتراسمن به اکتشافی دست یافتند که دنیا را تحت تاثیر قرار داد ,آنها متوجه شدند که میتوان کاری کرد که هسته های اورانیوم 235 شکسته شوند.

فرض کنید که نوترونی در اطراف یک هسته اورانیوم 235 آزادانه در حال حرکت است,این هسته تمایل زیادی دارد که نوترون کند را به درون خود بکشاند وآن راجذب کند.هسته اورانیوم پس از گیر اندازی این نوترون,دیگر هسته ای پایدار نیست وناگهان از هم شکافته می شود این هسته در طی فرآیند شکافت به دو یا چند هسته با جرم کوچکتر ,یعنی به صورت هسته های عناصر نزدیک به مرکز جدول تناوبی تجزیه می شود.به طور کلی در فرآیند شکافت اگر یک نوترون به هسته اصابت کند به طور میانگین 5/?نوترون در اثر شکافت آزاد می شود حال اگر ما تعداد نوترون های آزاد شده را 3 عدد فرض کنیم و مدت زمان لازم برای تحقق هر شکافت 01/0 ثانیه باشدمقدار اورانیوم مصرف شده در طی زمان یک ثانیه در حدود 10به توان 23 کیلوگرم خواهد بود !!! واضح است که واکنش زنجیره ای شکافت میتواند مقادیر قابل توجهی از اورانیوم را در مدت زمان ناچیزی به انرزی تبدیل کند.با توجه به توضیحات داده شده به وضوح مشخص است که ما نیازی به تولید مستمر نوترون نداریم بلکه با اصابت اولین نوترون به هسته وآزاد شدن نوترون های ناشی از فرآیند شکافت ما میتوانیم نوترون مورد نیاز خود را بدست آوریم که مسلما این تعداد نوترون بسیار بیشتر از نیاز ما خواهد بود. لازم به ذکر است که به حداقل مقدار اورانیومی که برای فرآیند شکافت لازم است جرم بحرانی یا مقدار بحرانی می گویند واز به هم پیوستن دو یا چند جرم بحرانی یک ابر جرم بحرانی حاصل می شود.

حال اگر بخواهیم واکنش زنجیره ای ادامه پیدا کند,حفظ یک اندازه بحرانی برای ماده اولیه اورانیوم ضرورت دارد .در صورتی که مقدار اورانیوم را خیلی کمتر از جرم بحرانی بگیریم ,بیشتر نوترون های تولیدی فرار خواهند کرد زیرا این فرار به عواملی چون : شکل فیزیکی اورانیوم و جرم آن وابسته است و در نتیجه واکنش متوقف می شود. از سوی دیگر اگر مقدار اورانیوم را فوق العاده زیاد بگیریم مثلا به اندازه یک ابر جرم بحرانی,تمام نوترون های تولیدی در واکنش های بعدی شرکت خواهند کرد وانرژی آزاد شده در یک فاصله زمانی کوتاه آنچنان زیاد خواهد شد که نتیجه ای جز انفجار نخواهد داشت!! بین این دو حالت یک خط فاصل وجود دارد:اگر بزرگی کره اورانیومی شکل را درست برابر اندازه بحرانی بگیریم آنگاه از هر شکافت فقط یک نوترون برای شرکت در شکافت بعدی باقی می ماند در این صورت واکنش با آهنگ ثابتی ادامه می یابد. از خاصیت حالت سوم برای توجیح عملکرد نیروگاههای
هسته ای استفاده می کنند. حال اگر به اندازه کافی اورانیوم 235 در اختیار داشته باشیم به آسانی می توانیم یک بمب ساده بسازیم !!!!! به این شکل که دو نیم کره از اورانیوم 235 را که هر کدام به اندازه جرم بحرانی است در دو انتهای یک استوانه قرار میدهیم و این دو قطعه را بوسیله ساز وکاری که خود طراحی کرده ایم ناگهان به یکدیگر متصل می کنیم که در این حالت ابر جرم بحرانی تشکیل می شود,حال اگر توسط دستگاه نوترون ساز نوترونی به هسته نزدیک کنیم وقوع انفجار حتمی است!!

در عمل برای آنکه انفجاری بزرگ و موثر حاصل شود ریزه کاری های زیادی را باید رعایت کرد.

در هر حال برای توضیح عملکرد نیروگاههای هسته ای لازم به ذکر است راکتورهای هسته ای را چنان طراحی میکنند که در آنها واکنش شکافت در شرایطی نزدیک به حالت بحرانی تحقق یابد. قلب راکتور اساسا متشکل است از سوخت(در این مورد اورانیوم 235) که در استوانه های مخصوص در بسته ای جا سازی شده اند. این استوانه ها در ماده ای که کند کننده نامیده می شوند غوطه ورشده اند.کند کننده به منظور کند سازی و باز تاباندن نوترونهایی که در واکنش شکافت تولید میشوند مورد استفاده قرار میگیرد که متداول ترین آنها عبارتند از:آب,آب سنگین وکربن. که در اینجااگر در آب معمولی (H2O) به جای ایزوتوپ هیدروژن معمولی از ایزوتوپ هیدروژن دوتریم استفاده شود آب سنگین بدست می آید.

سرعت واکنش را نیز می توان به کمک چند میله کنترل کرد که این میله ها در قلب راکتور قرار می گیرند. این میله ها معمولا از ماده ای مانند کادمیوم که نوترون ها را بخوبی جذب میکند ساخته می شوند. برای آنکه آهنگ واکنش افزایش یابد میله ها را تا حدودی از قلب راکتور بیرون می آورند ,برای کاستن از سرعت واکنش و یا متوقف ساختن آن,میله ها را بیشتر در قلب راکتور فرو میبرند.در نهایت واکنش صورت گرفته در راکتور به صورت گرمای بسیار زیادی ظاهر می شود بنابراین طبیعی است که راکتور ها همانند یک کوره عمل کنند وسوختش به جای گاز,نفت ویا ذغال سنگ ,اورانیوم 235 باشد. گرمای تولید شده را به کمک جریان سیالی که از قلب راکتور میگذرد به محفظه مبادله کننده گرما که در آن آب وجود دارد منتقل میکنند و درآنجا آب داخل مبادله کننده را تبخیر میکنند ;بخار متراکم شده پس از به گردش درآوردن توربین ژنراتورهای مولد برق,مجددا به داخل محفظه مبادله کننده باز میگردد.البته سیال گرم شده چون از قلب راکتور می گذرد و درآنجا در معرض تابش پرتوهای رادیواکتیو قرار میگیرد مستلزم مراقبت های ویژه است

 

رنگها و موجها

بسم الله الرحمن الرحیم

رنگها و موجها

دون تردید نور خورشید یکی از مهمترین نیازهای زندگی روی کره زمین است. اما دامنه ویژگیهای آن تنها به ایجاد زندگی و حیات در میان جانداران ختم نمی‌شود. در سال 1665 میلادی ، دانشمند بیست و سه ساله انگلیسی به نام آیزاک نیوتن به مطالعه نور مشغول بود. او در یک روز آفتابی و درخشان ، شیشه‌های اطاق را به کمک پرده‌هایی ضخیم و بسیار تیره مسدود کرد، به گونه‌ای که اطاق کاملا تاریک شد و از میان شکاف کوچکی در میان یکی از پرده‌ها ، باریکه‌ای از نور به درون اطاق می‌تابید. او این باریکه نور را از میان یک قطعه شیشه به شکل مثلث ، که منشور نامیده می‌شود، عبور داد. باریکه نور با گذشتن از میان منشور ، در مسیرش خمیده شد و شکست پیدا کرد.

شکست نور در منشور

نوری که از منشور بیرون آمده بود در راستایی سیر می‌کرد که اندکی با راستای وارد شدنش به منشور تفاوت داشت و به دیوار مقابل می‌تابید. جالب آنکه ، هنگامی که نیوتن منشور را از سر راه نور بر می‌داشت، باریکه تنها لکه گرد سفید رنگی را روی دیوار ایجاد می کرد، در حالی که وقتی منشور در مسیر باریکه نور می‌رفت، باریکه نور پخش می‌شد و به صورت رنگین کمان در می‌آید! در یک سر این رنگین کمان نور سرخ و در انتهای دیگر نور بنفش دیده می‌شد و در میان آنها رنگهای نارنجی ، زرد ، سبز و آبی قرار داشت. ما اینگونه رنگها را در اطراف خود می‌بینیم و قادریم آنها را لمس کنیم، در حالی که نیوتن قادر نبود نور را لمس کند، به همین دلیل بود که او نوار نور رنگی را طیف (Spectrum) نامید که در زبان لاتین به معنای روح است!

به راستی این رنگها از کجا می‌آیند؟!

نیوتن دریافت آن چیزی را که چشمهای ما به عنوان نور سفید می‌بینند در حقیقت مخلوطی از رنگهای گوناگون است که شکست آنها پس از منشور یکسان نیست و برای نور سرخ از همه رنگهای دیگر کمتر و برای نور بنفش از همه بیشتر است. نیوتن برای اثبات شکستهای متفاوت از دو منشور استفاده کرد و دوباره توانست نور سفید را بدست آورد. اما هنوز یک سوال دیگر باقی بود و آن این بود که چرا نور باید، رنگهای مختلفی را دارا باشد؟!

جنس نور

نیوتن به دنبال جنس نور بود. دو نظریه در این زمینه وجود داشت: اول آنکه نور از مجموعه‌ای از ذرات تشکیل شده است که بر خطی راست و به سرعت در حال حرکتند و دوم آنکه نور مجموعه‌ای از امواج است که بسیار کوچکند و در مسیری مستقیم حرکت می‌کنند. نکته بسیار قابل توجه در مورد امواج این بود که آنها می‌توانند خمیده شوند، این امر زمانی رخ خواهد داد که امواج با موانع برخورد کنند. شما می‌توانید خمیده شدن امواج آب را در برخورد با موانع ببینند. همچنین صدایی را که در یک طرف کنج دیوار می‌شنوید، می‌توانید در طرف دیگر آن کنج نیز گوش کنید، پس امواج صدا باید در اطراف آن کنج خمیده شده باشند. از سوی دیگر می‌دانید که اگر نور به یک طرف کنج بتابد خمیده نمی‌شود، به عبارت دیگر شما نمی‌توانید شخصی را از طرف دیگری ‌از کنج دیوار مشاهده کنید.
به همین دلیل بود که نیوتن تصور می‌کرد، نور جریانی از ذرات متحرک کوچک است، نه جریانی از امواج. اما همه دانشمندان با او موافق نبودند. یک هلندی به نام کریستین هویگنس نظریه موجی بودن نور را قبول داشت. او عقیده داشت که امواج کوچک بسادگی امواج بزرگ خمیده نمی‌شوند و اگر نور از امواج بسیار کوچک تشکیل شده باشد، به هیچ وجه خمیده نخواهد شد! او با نیوتن مخالف بود، هر چند که بسیاری عقیده داشتند که نیوتن بزرگترین دانشمند جهان است.

با این حال ، حتی ممکن است بزرگترین دانشمند جهان هم دچار اشتباه شود. شخصی به نام یانگ این مشکل را حل کرد. او در کار طبابت و تنظیم دایرة المعارف بریتانیکا استاد بود و ختی نوشته‌های مصریان را برای نخستین بار ترجمه کرد. با این وجود علاقه بسیاری به آزمایشهای مربوط به نور داشت. یانگ صوت را مطالعه کرد و فهمید هنگامی که دو صدا به هم می‌رسد، از هم می‌گذرند.

گاهی اوقات یک صدا ، صدای دیگر را کاملا حذف می‌کند. اما اگر موجهای صدا طولهای متفاوتی داشته باشند، موج بلندتر از موج کوتاهتر جلو می‌افتد و برای مدتی ، صدا بلندتر از حالت عادی خواهد شد، اما مدتی بعد سکوت برقرار می‌شود و این امر پی در پی ادامه خواهد داشت. اگر نور جریانی از ذرات باشد، این وضع پیش نمی‌آید، زیرا یک ذره نمی‌تواند دیگری را حذف کند. در سال 1801 میلادی ، یانگ با فرستادن یک باریکه نور از دو شکاف باریک متفاوت بسیار نزدیک به هم آزمایشی انجام داد.

 

 

آزمایش دو شکاف یانگ

در این آزمایش دو باریکه نور خارج شده از شکافها ، ابتدا اندکی پخش می‌شدند و هنگامی که به دیوار می‌رسیدند، بر هم می‌افتادند. ممکن است تصور کنید که در جایی که دو باریکه نور بر هم می‌افتند، نور بیشتری وجود خواهد داشت و بنابراین دیوار روشنتر از جاهایی خواهد بود که باریکه بر هم نیفتاده‌اند، اما به هیچ وجه چنین نیست. در جاهایی که دو باریکه بر هم می‌افتند، نوارهای روشن و تاریک متناوبی ایجاد می‌شود.

باریکه‌های نور در نقاطی همدیگر را حذف می‌کنند و در نقاطی دیگر بر هم اضافه می‌شوند و این عمل بصورت متناوب و درست همانند صوتهای موسیقی و تغییرات آنها صورت می‌گیرد. هنگامی که دو باریکه نور همدیگر را حذف می‌کنند، می گوییم که باریکه ها با هم تداخل کرده اند، یا اینکه تداخل ایجاد شده است. به این ترتیب نوارهای روشن و تاریک "فریزهای تداخلی" نامیده می‌شوند. با این آزمایش مسأله حل شد و معلوم گردید که حق با هویگنس است و نیوتن اشتباه می‌کرده است.

طول موج نور

نور از موجهایی بسیار ریز تشکیل شده است. یانگ از روی پهنای فریزهای تداخلی توانست طول یک موج نور را محاسبه کند. این طول را طول موج می‌نامند. با این محاسبه معلوم شد که طول موج نور حدود 20000/1 سانتیمتر است. البته همه امواج نور دارای طول یکسانی نیستند. نور سرخ بلندترین طول موج را دارد و نور بنفش کوتاهترین طول موج را دارا است. هر قدر طول موج کوتاهتر باشد، نور بیشتر شکسته می‌شود و به همین دلیل است که منشور رنگها را از هم جدا می‌کند.

منبع: دانشنامه رشد

 

سلمان هراتی

زندگینامه:
وی در 7 فروردین 1338 در روستای مرزدشت از توابع تنکابن در استان مازندران به دنیا آمد.
وی پس از پایان تحصیلات دبیرستان خود در رشتة ادبیات به تهران آمد و در دانشگاه تربیت معلم همین رشته را ادامه داد.
سلمان هراتی پس از آشنایی با شاعران حوزه هنری همراه بسیاری از آنها بارها عازم جبهه‌ها شد و برای رزمندگان به شعرخوانی پرداخت. شعرهای او تاکنون به صورت پراکنده در بیشتر نشریات کشور، ج‍ُنگهای ادبی، مجموعه شعرهای گردآوری‌شده انتشار یافته است. «سلمان هراتی» در یکی از روزهای آبان 1365 در یک حادثه رانندگی که در شمال روی داد درگذشت. زنده‌یاد هراتی در سال 1361 ازدواج کرد و از وی 2 فرزند به نامهای رابعه و رسول به یادگار مانده است. آرامگاه سلمان در گورستانی در نزدیکی روستای مرزدشت قرار دارد.
کتاب «از آسمان سبز» در اولین دوره انتخاب بهترین کتاب دفاع مقدس از سوی بنیاد حفظ آثار و نشر ارزشهای دفاع مقدس جزء آثار برتر دهه 60 انتخاب شد.

آثار:

«از آسمان سبز» (منتشر شده در زمان حیات شاعر)، «دری به خانه خورشید» 1367، «گزیده ادبیات معاصر» 1358، «از این ستاره تا آن ستاره» 1367 و «مجموعه کامل شعرهای سلمان هراتی» 1380.

 

اندازه‌گیری ارتفاع آسمان‌خراش با فشارسنج!

«به نام خدا»

 

اندازه‌گیری ارتفاع آسمان‌خراش با فشارسنج!

 

 

 

 

 

توضیح دهید که چگونه می توان با استفاده از یک فشارسنج ارتفاع یک آسمان خراش اندازه گرفت؟"

سوال بالا یکی از سوالات امتحان فیزیک در دانشگاه کپنهاگ بود.

یکی از دانشجویان چنین پاسخ داد: "به فشار سنج یک نخ بلند می بندیم. سپس فشارسنج را از بالای آسمان خراش طوری آویزان می کنیم که سرش به زمین بخورد. ارتفاع ساختمان مورد نظر برابر با طول طناب به اضافه ی طول فشارسنج خواهد بود."

پاسخ بالا چنان مسخره به نظر می آمد که مصحح بدون تامل دانشجو را مردود اعلام کرد. ولی دانشجو اصرار داشت که پاسخ او کاملا درست است و درخواست تجدید نظر در نمره ی خود کرد. یکی از اساتید دانشگاه به عنوان قاضی تعیین شد و قرار شد که تصمیم نهایی را او بگیرد.
نظر قاضی این بود که پاسخ دانشجو در واقع درست است، ولی نشانگر هیچ گونه دانشی نسبت به اصول علم فیزیک نیست. سپس تصمیم گرفته شد که دانشجو احضار شود و در طی فرصتی شش دقیقه ای پاسخی شفاهی ارائه دهد که نشانگر حداقل آشنایی او با اصول علم فیزیک باشد.
دانشجو در پنج دقیقه ی اول ساکت نشسته بود و فکر می کرد. قاضی به او یادآوری کرد که زمان تعیین شده در حال اتمام است. دانشجو گفت که چندین روش به ذهنش رسیده است ولی نمی تواند تصمیم گیری کند که کدام یک بهترین می باشد.

قاضی به او گفت که عجله کند، و دانشجو پاسخ داد: "روش اول این است که فشارسنج را از بالای آسمان خراش رها کنیم و مدت زمانی که طول می کشد به زمین برسد را اندازه گیری کنیم. ارتفاع ساختمان را می توان با استفاده از این مدت زمان و فرمولی که روی کاغذ نوشته ام محاسبه کرد."
دانشجو بلافاصله افزود: "ولی من این روش را پیشنهاد نمی کنم، چون ممکن است فشارسنج خراب شود!"
"روش دیگر این است که اگر خورشید می تابد، طول فشارسنج را اندازه بگیریم، سپس طول سایه ی فشارسنج را اندازه بگیریم، و آنگاه طول سایه ی ساختمان را اندازه بگیریم. با استفاده از نتایج و یک نسبت هندسی ساده می توان ارتفاع ساختمان را اندازه گیری کرد. رابطه ی این روش را نیز روی کاغذ نوشته ام."
"ولی اگر بخواهیم با روشی علمی تر ارتفاع ساختمان را اندازه بگیریم، می توانیم یک ریسمان کوتاه را به انتهای فشارسنج ببندیم و آن را مانند آونگ ابتدا در سطح زمین و سپس در پشت بام آسمان خراش به نوسان درآوریم. سپس ارتفاع ساختمان را با استفاده از تفاضل نیروی گرانش دو سطح بدست آوریم. من رابطه های مربوط به این روش را که بسیار طولانی و پیچیده می باشند در این کاغذ نوشته ام."
"آها! یک روش دیگر که چندان هم بد نیست: اگر آسمان خراش پله ی اضطراری داشته باشد، می توانیم با استفاده از فشارسنج سطح بیرونی آن را علامت گذاری کرده و بالا برویم و سپس با استفاده از تعداد نشان ها و طول فشارسنج ارتفاع ساختمان را بدست بیاوریم."
"ولی اگر شما خیلی سرسختانه دوست داشته باشید که از خواص مخصوص فشارسنج برای اندازه گیری ارتفاع استفاده کنید، می توانید فشار هوا در بالای ساختمان را اندازه گیری کنید، و سپس فشار هوا در سطح زمین را اندازه گیری کنید، سپس با استفاده از تفاضل فشارهای حاصل ارتفاع ساختمان را بدست بیاورید."
"ولی بدون شک بهترین راه این می باشد که در خانه ی سرایدار آسمان خراش را بزنیم و به او بگوییم که اگر دوست دارد صاحب این فشارسنج خوشگل بشود، می تواند ارتفاع آسمان خراش را به ما بگوید تا فشارسنج را به او بدهیم!"

دانشجویی که داستان او را خواندید، نیلز بور، فیزیکدان دانمارکی بود.

 

تاریخچه بسکتبال

ورزش بسکتبال در سال ۱۸۹۱ توسط آموزگاری به نام دکتر جمیز ناسمیت ابداع و در ورزشگاه اسپرینگ فیلد ماساچوست به نمایش درآمد. در آن زمان به جای حلقه‌های گل از سبدهای مخصوص که به شکل زنبیل بودند استفاده می‌شد که توپ پس از گل شدن در درون آنها قرار می‌گرفت که پس از هر بار گل شدن توپ را به وسیله نردبان از درون سبد بیرون می‌آوردند و به وسیله بین طرفین در جریان بازی قرار می‌دادند. هدف اصلی از ابداع چنین ورزشی ایجاد فعالیت در محیط سربسته‌ای در فصل زمستان بود تا ورزشکاران بتوانند در این فصل نیز فعالیت داشته و با ورزش فرم بدنی و وضعیت جسمانی خود را در حد مطلوب حفظ نمایند.

قوانین ابتدایی

به همین جهت تعداد بازیکنان نامحدود بود و هر دفعه می‌توانستند از هر تعداد دلخواه برای بازی استفاده نمایند که کم‌کم قوانینی برای انجام بازی و سایر قسمت‌ها وضع نمودند به طوری که تعداد بازیکنان هر طرف ۹ نفر تعیین گردید وسپس به ۷ نفر تقلیل یافت و بالاخره این تعداد به ۵ نفر تثبیت یافته‌است. هر بازیکن می‌توانست در موقع وقوع خط به جای کلیه بازیکنان تیم خود پرتاب آزاد را انجام دهد. هر تیم می‌توانست از شروع تا پایان بازی توپ را در زمین خود به طور دلخواه نگهداری نماید. هر دفعه که توپ گل می‌شد بازی یا بین طرفین یا (جامپ بال) از وسط زمین ادامه می‌یافت. بازیکنان بلند قد می‌توانستند در نزدیک سبد قرار گیرند و توپ را به آرامی در سبد جای دهند (قانون سه ثانیه وجود نداشت). در آن ایام سعی شد توجه رؤسای مدارس و گردانندگان سازمان‌های ورزشی را به آموزش بسکتبال جلب نمایند. با این وجود و این همه تلاش مداوم و پیگیر تعلیم بسکتبال برای مربیان حالت جنبی داشت و اساساً فعالیت آن‌ها در ورزش‌های رقابت‌آمیز دیگری مانند فوتبال امریکایی متمرکز بود.

پیشرفت بسکتبال بعد از جنگ جهانی اول

بعد از جنگ جهانی اول بسکتبال ورزش رقابت‌آمیز و بزرگی شد. و به مرور مربیان بسکتبال وضعیت ثابتی پیدا کردند و فعالیتشان مؤثر واقع شد و این ورزش شناخته گردید و به اروپا نیز کشیده شد در سال ۱۹۲۴ نخستین مسابقات جهانی بین تیم‌های بسکتبال فرانسه، ایتالیا، انگلستان و امریکا در پاریس برگزار گردید و از سال ۱۹۳۲ فدراسیون آماتوری بسکتبال در ژنو با نمایندگی چند کشور تشکیل شد و در مسابقات المپیک ۱۹۳۶ برلین برای نخستین بار ۲۳ کشور در مسابقات رسمی بسکتبال شرکت نمودند و امریکا قهرمان المپیک گردید.

بسکتبال امروزی

امروز با این که ورزش بسکتبال یکی از سریعترین و پرطرفدارترین ورزش‌های جهان است و بعضی از اصول آن نیز تغییر یافته ولی هنوز اصول اساسی آن مانند زمان دکتر نایسمیت که در سبدهای هلو انجام می‌گرفت به قوه خود باقی است.

قوانین بسکتبال

قوانین بازی

بسکتبال در چهار دوره ۱۰ دقیقه‌ای (بین‌المللی) یا ۱۲ دقیقه‌ای (اِن.بی.اِی) انجام می‌شود. زمان استراحت بین دوره اول و دوم و بین دوره سوم و چهارم ۲ دقیقه و بین دوره دوم یا سوم (بین دو نیمه) ۱۰ دقیقه‌است. وقت اضافه در بسکتبال ۵ دقیقه‌است. پس از استراحت بین دو نیمه زمین حمله و دفاع دو تیم عوض می‌شود. زمان‌های گفته شده زمان واقعی بازی است. یعنی زمانی که توپ در جریان نیست وقت بازی متوقف می‌شود. مثلاً زمانی که خطایی که رخ داده‌است یا هنگام پرتاب آزاد زمان متوقف می‌شود. به همین دلیل زمان انجام یک بازی کامل بیشتر از مجموع عددی زمان‌های بالا است و معمولاً حدود دو ساعت طول می‌کشد.

در بسکتبال تساوی وجود ندارد و آن قدر وقت اضافه به بازی داده می‌شود تا یکی از دو تیم برنده شود. زمان استراحت بین وقت‌های اضافه ۱ دقیقه‌است.

تیم و لباس

در بسکتبال هر تیم پنج بازیکن در زمین دارد و می‌تواند حداکثر هفت بازیکن ذخیره نیز داشته باشد. تیم‌ها مربی‌ای دارند که بر استراتژی‌های تیم نظارت می‌کند. ممکن است تیمی کمک مربی، مدیر، آمارگیر، دکتر و بدن‌ساز نیز داشته باشد. لباس بازی برای زنان و مردان بلوز بی‌آستین و شلوارک است و نام تیم در جلوی بلوز و شمارهٔ بازیکن در پشت و جلوی آن نوشته شده‌است. در بازی‌های بین‌المللی شماره‌های بازیکنان از ۴ تا ۱۵ است. بازیکنان بسکتبال معمولاً از کفش‌های ساقدار استفاده می‌کنند که از مچ پا حفاظت بیشتری می‌کند.

لیگ‌ها و مسابقات

حرفه‌ای ترین لیگ بسکتبال دنیا را NBA می‌نامند این لیگ بین تیمهای باشگاه‌های حرفه‌ای قاره امریکای شمالی (ایالات متحده امریکا و کانادا) است. راحت ترین لباس برای بسکتبال تی شرت یا بلوز رکابی و شورت ورزشی می باشد.همچنین داشتن یک دست لباس گرمکن توصیه می شود.کفش مناسب بسکتبال هم معمولا کفش های ساقدار است که از قوزک پا محافظت می کند.

مسابقات لیگ حرفه‌ای ان‌بی‌اِی

این لیگ مسابقات به صورت دو دسته در کنفرانس شرق و غرب برگزار می‌شود که در پایان قهرمان این دو کنفرانس نیز به مصاف هم می‌روند. علاوه بر این مسابقات ، هر ساله مسابقه‌ای تحت عنوان بازی ALL-STARS انجام می‌شود که در آن ستاره‌های کنفرانس شرق و غرب با یک بازی نمایشی به مصاف هم می‌روند. مسابقه ALL-STARS شامل مسابقه slam dunk - شوت ۳ امتیازی و ... می‌باشد که طرفداران بسیار زیادی دارد

بسکتبال نمایشی امریکا AND ۱

در امریکا گروهی از بسکتبالیست‌ها که اغلب در بسکتبال رسمی امریکا شهرت چندانی نیز ندارند (به جز تعداد بسیار محدودی از آنها) تحت عنوان and ۱ فعالیت می‌کنند. گروه AND ۱ با انجام بازی‌های نمایشی و بسیار حرفه‌ای و برگزاری مسابقاتی با جذابیت بسیار بالا هواداران بسیار زیادی را به سمت خود جلب کرده‌اند. لازم به ذکر است که در این بازی‌ها برای زیبایی بیشتر بازی انجام نشدن دقیق برخی از تخلف‌ها رعایت نمی‌شود. این بازی‌ها در غالب خیابانی (street BALL) و سالنی برگزار می‌شود ولی هیچ‌یک از آنها جنبهٔ رسمی ندارد.

بسکتبال خیابانی

بسکتبال خیابانی به آن گونه از بسکتبال که در زمین‌های سرباز بازی می‌شود اطلاق می‌گردد. قوانین آن، قوانین بسکتبال عادی است با تغییرات جزئی‌ای که به نسبت محل بازی متفاوت است.